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ABSTRACT: Dynamic nanoindentation was performed on a cured epoxy, a poly(methyl
methacrylate) (PMMA), and two poly(dimethyl siloxane) (PDMS) samples of different
crosslink densities. These samples were used to compare dynamic nanoindentation
with classical rheological measurements on polymeric samples in the glassy and rub-
bery plateau regions. Excellent agreement between bulk rheological data and
dynamic nanoindentation data was observed for the two glassy materials (epoxy and
PMMA) and the less compliant PDMS sample. More divergent results were observed
for the more compliant PDMS sample. The theoretical foundation and historical
development of the working equations for these two types of instrumentation are pre-
sented and discussed. The major difference between nanoindentation and the more
classical rheological results is in the treatment of the instrument–sample interface.
VVC 2005 Wiley Periodicals, Inc.* J Polym Sci Part B: Polym Phys 43: 1812–1824, 2005
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INTRODUCTION

Recent commercial development of instrumented
indentation or nanoindentation systems has
resulted in improvements in quasi-static force
sensitivity1 and the advent of dynamic testing
with harmonic force–displacement capabilities.2

These developments have generated scientific
interest in the use of these instruments to

characterize the mechanical response of soft
materials such as plastics, rubbers, gels, and
biological materials. Potential benefits of using
nanoindentation to characterize soft materials
include (1) the ability to probe the mechanical
response with submicrometer spatial resolution
both laterally across the surface and through
the thickness and (2) the ability to measure
time-dependent properties with relatively small
amounts of material. However, soft materials
can contemporaneously store and dissipate
applied mechanical energy, and so the transfor-
mation between the measured instrumental
response and actual sample properties obtained
from an indentation measurement is more diffi-
cult to interpret than that for more traditional
engineering materials, such as metals or
ceramics. Thus, these materials present a major
challenge to the application of this technology.

The application of electromagnetic and elec-
trostatic transducers to instrumented indenta-
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tion systems has brought about substantial
improvements in the control and detection of
forces and displacements at very low levels,
resulting in tip–sample contact dimensions as
low as hundreds of nanometers. Additionally,
these control and detection systems are virtually
identical to those used in commercial rheometer
instrumentation. To enhance the low force capa-
bilities of instrumented indentation systems,
dynamic capabilities have been developed, in
which small-amplitude (1 nm) harmonic oscilla-
tions are superposed over a quasi-static loading
history. The development of a dynamic modula-
tion method, sometimes called the continuous
stiffness method (CSM), was based on a dynamic
model of the instrument and the assumption of
zero energy loss at the tip–sample interface.
This method allows indentation modulus and
hardness values to be calculated throughout the
loading history, as opposed to a single set of val-
ues calculated from the unloading data with
more traditional indentation analysis. Addition-
ally, measures of the dynamic performance of
the instrument provide a means for sensitive
detection of the initial point of tip–sample con-
tact, which can be a large source of uncertainty
in indentation measurements of soft materials.
Recently, the CSM method has been used to
measure the dynamic response of the sample
over a range of frequencies, including calcula-
tions of the energy storage and loss, similarly to
more classical rheological measurements. In this
case, instead of the assumption of no damping
at the tip–sample interface, the stiffness of the
load frame is taken to be infinite.

The ability to characterize the viscoelastic
response of small volumes of material is an
important for using nanoindentation to charac-
terize soft materials. Commercial rheometers
require gram quantities of a sample and deter-
mine mechanical properties averaged over the
entire sample. Often, research-grade materials
cannot be initially produced in sufficient quanti-
ties for such measurements. Combinatorial
approaches to material development also require
measurement capabilities that can be applied to
small amounts of material. Although many iso-
tropic, homogeneous samples are accurately
approximated by average properties, location-
specific or surface-sensitive measurements are
often required for characterizing many soft
materials of interest, such as thin polymer films,
polymer blends, copolymers, polymer composites
and other filled systems, and biomaterials. How-

ever, fundamental differences exist between rhe-
ometry and nanoindentation systems that arise
from the divergent historical development of
these instruments. Exploring this history,
including the relevant physics and analyses,
may provide a framework for bridging these
measurement techniques.

HISTORICAL COMPARISON OF
INDENTATION AND RHEOLOGY

Instrumented indentation is a well-developed
experimental technique for measuring the prop-
erties of hard materials, such as minerals,
ceramics, and metals. The overall constitutive
behavior for these traditional engineering mate-
rials generally conforms to elastic–plastic mod-
els, including a single real stiffness parameter
and little-to-no sensitivity to the difference
between compressive and shear strain. Elastic–
plastic constitutive models have been used to
describe the indenter–sample interaction with a
single characteristic strain level, even though
the contact geometry produces a large range of
strain levels.3 Additionally, for the elastic–plas-
tic model, the dominant mechanism of energy
transfer at low strain levels and short time
frames is elastic (i.e., energy storage), whereas
for higher strains and longer time frames, the
mechanism is plastic (i.e., energy dissipation).
Because the sample may be rigid, the compli-
ance of the instrument can often be a significant
fraction of the total response and thus must be
calibrated.

In contrast, classical rheology focuses on the
response of soft materials or liquids to very
small time-dependent applied strains. The meas-
ured response of these soft materials often
involves simultaneous energy storage and
energy dissipation, and the two mechanisms can
be roughly equal in magnitude.4 Describing the
resulting time-dependent stress of soft materials
subjected to small applied strains often requires
a viscoelastic response. The viscoelastic response
requires complex mathematics (i.e., with real
and imaginary terms) to fully describe both the
viscous and elastic components. Additionally,
the response of soft materials can be highly
dependent on the applied strain level; that is,
soft materials can have a nonlinear response to
applied strain, and so linear viscoelasticity is
strictly defined only for infinitesimal small
strains. The characterization of the nonlinear
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response is traditionally performed on special-
ized instrumentation.4 Reducing the complexity
of the transformation from the measured instru-
mental response to the material properties, also
called the working equations, is a major design
consideration for this type of rheological instru-
mentation. Rheological measurements, perform-
ed in either shear or compression, are confined
to one of two well-defined instrumental configu-
rations, which correspond to simplifying limits
of the working equations. These two limits are
termed gap loading or surface loading. These
instrumental configurations limit the strain
level to very small values, typically less than
5%, and produce well-defined flow fields in the
sample. These experimental restrictions on the
instrumental design are critical for controlling
the instrument–sample interactions so that they
can be effectively mathematically modeled.

In instrumented indentation, the tip shape
and motion produce the instrument–sample
interactions and thus define the imposed strains
or flow fields, which must be modeled by the
components of the working equations. Tip geo-
metries that are currently used, in general, are
small versions of classic indenter designs and
include flat punches, various rounded probes
such as half-spheres, rounded cones, and para-
boloidal tips, and pyramidal tips such as the
popular Berkovich tip. These designs were origi-
nally created to compare the constitutive behav-
ior of metals. For example, because many previ-
ously developed hardness test methods were
appropriate only for comparing a narrow class of
metals, the Vickers hardness test5 was devel-
oped to provide a more continuous scale of hard-
ness with a diamond pyramid indenter. In this
case, the Vickers tip geometry was solely based
on achieving a desirable ratio of the indentation
diameter to the ball diameter in the Brinell
hardness test, for which this desirable ratio is
with respect to optimizing the test to include a
wider range of metals than other hardness tests.
The Berkovich pyramid was later suggested as a
three-faced analogue to the four-faced Vickers
pyramid to provide improved reproducibility in
fabrication over the Vickers tip while maintain-
ing the same area function 5. Similarly, the ease
of manufacturability and/or simplification of
analysis for elastic–plastic materials led to the
use of rounded and flat punch probes.

Analyses of indentation behavior are gener-
ally based on elastic contact theories, such as
those of Hertz and Sneddon, or extensions for

elastic–plastic behavior. For example, nominal
indentation stresses and strains have been
defined as a function of geometry.6,7 For a Ber-
kovich pyramidal tip, empirical analyses based
on elastic–plastic metals attributed to Tabor8

yield an estimated characteristic strain of
8–10%, although recent research3,9 suggests
even higher values. The mean stress or hard-
ness, H, is defined as the ratio of the force, P, to
the contact area, A, where A is in general
related to the displacement, h, by the tip geome-
try. However, traditional indentation tips pro-
duce combinations of shear and compressional
deformations of the sample that depend on the
particular tip geometry. In contrast to most met-
als, soft materials are sensitive to the type and
level of applied strain. Thus, the use of current
indenter tip shapes to characterize soft materi-
als will present difficulties in correlating the
measured instrumental response to the actual
material properties of the sample. This problem
is clearly demonstrated in the following section.

Working Equations for Rheology and
Instrumented Indentation

For both classical rheology and instrumented
indentation on soft materials, the forces and dis-
placements measured in any mechanical experi-
ment are related to the states of stress and strain
by the constitutive equation, which describes the
properties sought and the equations of motion
and continuity.4 In classical rheology, the dynamic
response of viscoelastic materials is characterized
by the use of oscillatory experiments with one of
two specific instrumental geometries that corre-
spond to simplifications in the working equations
that describe the dynamic instrument–sample
interaction. Both specific instrumental geometries
limit the applied strain to levels of linear stress
response (i.e., deformations are infinitesimal),
thus minimizing nonlinear response. The first
limit, termed gap loading, is defined when the
sample dimensions are small with respect to the
wavelength of the elastic wave corresponding to
the applied steady-state deformation. The inertial
forces can be neglected, and the stress–strain
ratios are related to force–displacement ratios by
simple geometric factors in a gap-loading geome-
try. A simple example is the use of gap-loading
geometry for measurements of the shear storage
modulus (G0) and loss modulus (G@) of viscoelastic
polymer melts. In this case, the sample is con-
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fined between two narrowly spaced parallel
plates, for which the gap separation is less than
or equal to �s/50 � �s, where �s is the shear
wavelength. This limit generally sets the upper
frequency limit in commercial rheological instru-
mentation. The propagation of Raleigh shear
waves, which have no compressional component,
is generated in the sample by the motion of one
of the parallel plates and is approximated by a
linear shear gradient.4,10,11 One of the parallel
plates is driven with a known harmonic displace-
ment, and the resulting force is measured at the
other parallel plate. G0 and G@ are given by these
extremely simple relationships:

G0 ¼ P0

bh0
cos � ð1Þ

G00 ¼ P0

bh0
sin � ð2Þ

In these equations, P0 and h0 are the force and
displacement amplitudes, � is the phase angle
between the force and displacement, and b is a
geometric factor. These expressions apply only to
this extremely specialized instrumental geometry.
To demonstrate this point, a simple change can
be made so that the force and displacement are
measured at the same surface. Now eqs 1 and 2
can no longer be used, and the motion of this sur-
face must be modeled with a more complex
expression for the mechanical impedance, Z*,
describing the instrument–sample interaction. A
model of a damped harmonic oscillator, which
includes a collection of springs and dashpots,
such as that shown in Figure 1(a), is typically
used, and Z* is modeled by a parallel arrange-
ment of a spring, SM, accounting for the sample
elastance and a dashpot, RM, accounting for the
sample frictance, with the terminology of Ferry.4

This parallel arrangement of spring and dashpot
does not correspond to a Voigt/Kelvin constitutive
element, as SM and RM do not represent the sam-
ple modulus and viscosity. Rather, in the case of
driving the model in Figure 1(a) by a sinusoidal
force, they are related to the real and imaginary
components of Z* as follows:

Z�¼RMþiXM ¼RMþið!M�SM=!�S0
M=!Þ ð3Þ

where ! is the radian frequency, M is the mass
of the moving element, SM

0 is the elastance of
the instrument springs, and RM and XM are the
mechanical resistance and mechanical reactance.

For this type of experiment, G0 and G@ are
given by

G0 ¼ SM

b
ð4Þ

G00 ¼ !RM

b
ð5Þ

This subtle shift in instrumental design now
requires the direct measurement of the compo-
nents of the complex mechanical characteristic
impedance to characterize the viscoelastic
response of the sample. In the gap-loading
example, the only requirement was the meas-
urement of the force and displacement ampli-
tudes and the phase angle between them. The
mathematics become even more involved if the
sample dimensions are not small. For example,
when the thickness in the parallel-plate geome-
try becomes large ( �s/50 � �s,), the inertial
forces can no longer be neglected.

The second well-defined instrumental geome-
try for classical rheology, termed surface load-
ing, assumes that the thickness (or other appro-
priate dimension) is large enough so that
the Raleigh shear wave energy propagation
generated in the sample by the motion of a
transducer in contact with the sample will prop-
agate and dissipate completely with no reflected
energy reaching the transducer. The important
geometric parameter becomes the contact area,
As, of the driving surface, and again, the com-
plex mechanical impedance is measured. In the
previous example (eqs 4 and 5), SM and XM were
related only to G0, and RM was related only to
G@. In surface loading, however, G0 and G@
depend on both RM and XM:

G0 ¼ R2
M � X2

M

� �
As�

ð6Þ

G00 ¼ 2RMXM

As�
ð7Þ

Because inertial forces are now important, the
sample density, �, is involved in these equations.
In this case, knowledge of both components, real
and imaginary, of the complex characteristic
impedance is required to determine either the
storage or loss component of the sample
response. All classical shear rheology on soft
materials employs one of these two geometries.

Similarly to rheological instrumentation, the
dynamic instrument–sample interaction for
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instrumented indentation of soft materials is
based on a damped harmonic oscillator model in
which the mechanical impedance of the instru-
ment–sample interaction is again modeled by a
parallel arrangement of a spring and a dashpot, as
shown in Figure 1(b).2,12,13 However, unlike rheo-
logical instrumentation, the relationships between
G0 and G@ and RM and SM have been assumed with
a basis in the elastic solution to the tip–sample
contact problem. According to the notation in Fig-
ure 1(b), which is common in the instrumented
indentation literature, the sample impedance is
made up of the tip–sample contact stiffness, S,
and the tip–sample damping factor, Cs. Solving for

the real and imaginary components of the complex
impedance results in expressions for S and Cs:

S ¼ P0

h0
cos � þ !2m� Ks� ð8Þ

Cs ¼ P0

h0
sin � � Ci ð9Þ

S is thus a function of calibrated instrument
and measured test parameters, including the
system spring stiffness Ksp, system damping
coefficient Ci, system mass m, frequency !,
phase angle �, magnitude of the force oscillation

Figure 1. (a) Schematic illustration of the dynamic model of the Birnboim appara-
tus after Ferry4 and (b) schematic illustration of a depth-sensing indentation system
(left) and a corresponding dynamic model (right) that includes a parallel spring–
dashpot element to account for the sample behavior. [Color figure can be viewed in
the online issue, which is available at www.interscience.wiley.com]
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P0, and magnitude of the displacement oscilla-
tion h0. During an indentation measurement
with CSM, Cs is assumed to be zero and S is
estimated as a function of depth throughout the
loading segment with eq 8. The following equa-
tion can then be used to calculate the contact
depth, hc, continuously with the measured con-
tact stiffness, displacement h, and load P:

hc ¼ h� "P

S
ð10Þ

In this equation, " is a geometric constant.
Detailed knowledge of the tip shape combined
with knowledge of hc yields an estimate of the
contact area, A, continuously, and thus the sam-
ple modulus E can be measured continuously
with the following equation:1,14

S ¼ 2aEr ¼ 2ffiffiffi
�

p Er

ffiffiffiffi
A

p
ð11Þ

In this equation, the cross section of the indenter
is assumed to be circular with respect to the con-
tact radius, a, to the projected area of tip–sample
contact, A. A small correction is sometimes
applied for noncircular cross sections,7 and addi-
tional minor corrections have also been sug-
gested.3 The reduced modulus, Er, accounts for
deformation of both the indenter (elastic modulus
Ei and Poisson’s ratio �i) and the sample (elastic
modulus Es and Poisson’s ratio �s) and is given by

1

Er
¼ ð1� �2s Þ

Es
þ ð1� �2i Þ

Ei
ð12Þ

The current calculations of the reduced storage
modulus, Er

0
, and reduced loss modulus, Er

@,13 are
based on the elastic solution for quasi-static inden-
tation, that is, eq 11, which when rearranged yields

Er ¼ S
ffiffiffi
�

p

2
ffiffiffiffi
A

p ð13Þ

Thus, the following equations are used:

E0
r ¼

S
ffiffiffi
�

p

2
ffiffiffiffi
A

p ð14Þ

E00
r ¼

!Cs
ffiffiffi
�

p

2
ffiffiffiffi
A

p ð15Þ

For an isotropic material, the corresponding val-
ues in shear, Gr

0
and Gr

@, are found by the divi-
sion of Er

0
and Er

@, respectively, by 2(1 þ �).

Loubet et al.15 argued that equations similar to
eqs 14 and 15 are based on the principle of elastic–
viscoelastic correspondence. In ref. 15, equations
for storage and loss moduli are presented in terms
of shear, with the 1 � �2 term missing and �
assumed to be 0.5; this results in a factor of 0.75
between Loubet et al.’s equations and eqs 14 and
15. However, in this case, the correspondence prin-
ciple has been used incorrectly. First, the corre-
spondence principle applies in the solution of a vis-
coelastic boundary value problem after a Laplace
or other transform is applied to remove time from
the system of variables. Such a transformation of
variables produces an elastic problem in the trans-
formed variables, the elastic solution of which can
be used with the viscoelastic operators in place of
the elastic constants; this then yields a solution to
the original viscoelastic problem upon transforma-
tion back to the time domain. However, for contact
mechanics problems, this procedure is not strictly
valid, in general, because the boundary conditions
change as a function of time. Even if this restric-
tion is ignored mathematically, formulating eqs 14
and 15 by the substitution of the viscoelastic oper-
ator, E0, for Er in eq 13 and by the substitutions of
E@ for Er and !C for S is clearly inappropriate.
Rather, the appropriate substitution would be of
the viscoelastic operators into, for example, the
elastic solutions from Sneddon,16 which involve
the elastic shear modulus. Equation 13 was ini-
tially derived from Sneddon’s solutions by Pharr
et al.,14 and thus the viscoelastic solution would
require replacing the elastic shear modulus with a
viscoelastic shear modulus, which is complex in
the case of oscillatory deformation, completing the
derivation, and transforming back to the time or
frequency domain. Complicating this derivation
are the potential differences between the quasi-
static contact problem and the dynamic contact
problem.

A second argument used by Lucas et al.2 was
that of a similarity to dynamic mechanical anal-
ysis (DMA), resulting in the following equations:

E0 ¼
ffiffiffi
�

p

2
ffiffiffiffi
A

p P0

h0
cos �

� �
ð16Þ

E00 ¼
ffiffiffi
�

p

2
ffiffiffiffi
A

p P0

h0
sin �

� �
ð17Þ

These equations are similar to eqs 1 and 2.
However, the assumptions that lead to eqs 1
and 2, namely, gap-loading conditions with the
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force and displacement measured at opposite
surfaces of parallel plates in simple shear, are
certainly not met in the case of instrumented
indentation. Rather, the measurement geometry
corresponds more closely to that of surface load-
ing, and thus the storage and loss moduli are
more likely to be functions of both the real and
imaginary parts of the mechanical impedance.
Moreover, the storage and loss moduli in eqs 16
and 17 should actually be reduced moduli such
that these equations are equivalent to eqs 14
and 15. Thus, eqs 14 and 15 appear to have lit-
tle physical basis, and the corresponding meas-
urements of the storage and loss moduli are
questionable. In this study, dynamic mechanical
characterization was performed for a cured
epoxy, poly(methyl methacrylate) (PMMA), and
poly(dimethyl siloxane) (PDMS) with traditional
rheological instrumentation and dynamic inden-
tation, and the results are compared and
analyzed.

EXPERIMENTAL

Although the nanoindenter and rheological
instrumentation share a common electrostatic or
electromagnetic control system ideal for testing
soft materials, they approach the problem of
characterizing soft materials from opposing per-
spectives. The nanoindenter was originally
designed for hard materials and has been
adapted for use in soft materials, whereas rheo-
logical instruments were designed for fluid
materials and have been adapted for use in soft
materials. To facilitate a comparison between
the nanoindenter and standard rheological
instrumentation, samples must have a modulus
that is high enough to be measured with the
available nanoindenter, typically greater than 1
MPa. This modulus is too large for rheological
devices designed for viscoelastic liquids. Fortu-
nately, deformations in shear and simple exten-
sion can be used interchangeably, provided that
the deformations are very small.4 For this rea-
son a rheological solids analyzer was used to
measure the dynamic response, and the strain
was kept below 0.01. It is expected, therefore,
that testing these model materials with both of
these devices should yield similar results for the
harder, glassy polymer materials and more
divergent results for softer, rubbery materials.
Four materials were selected, including two
glassy polymers (a cured thermoset epoxy resin

and commercial PMMA) and two rubbery cross-
linked PDMS elastomers.

Materials

The materials used in this study included an
amine-cured epoxy, PMMA, and two PDMS sam-
ples. Epoxy films approximately 190 �m thick
were cast onto silicon wafers in a dry nitrogen
atmosphere glovebox with a drawdown techni-
que. Highly pure diglycidyl ether of bisphenol A
with a mass per epoxy (DER 332, Dow Chemi-
cal) equivalent of 172 g and 1,3-bis(amino-
methyl)-cyclohexane were mixed at the stoichio-
metric ratio. All samples were cured at room
temperature for 48 h, and this was followed by
postcuring at 130 8C for 2 h. The films were
then removed from the silicon substrates with
tweezers after immersion in warm water. The
glass-transition temperature of the cured films
was 123 6 2 8C, as estimated with DMA. The
PMMA sample was obtained from a commercial
Plexiglas acrylic sheet from AtoHaas North
America, Inc. The PDMS samples were obtained
from Dow Corning Corp. The first sample (the
stiffer of the two) was a general-purpose (GP-50)
silica-filled crosslinked PDMS with a thickness
of 3.2 mm. The second PDMS sample was made
from Sylgard 184 mixed at a 10:1 (resin/cross-
linker) mass ratio. PDMS was cast onto a glass
plate and degassed for 30 min under 67.7 kPa of
vacuum pressure for 4 h at 65 8C; this resulted
in a layer thickness of 2.7 mm.

Solid Rheology Measurements

DMA measurements were measured with a
rheological solids analyzer (RSA II, Rheometrics
Scientific, Inc.) with the optional environmental
control module. This instrument is a displace-
ment-controlled system capable of performing
dynamic mechanical tests with controlled dis-
placement amplitude. The amount of strain is
determined from the applied displacement and
the sample geometry, and a load transducer
measures the resulting force. The applied strain
for all samples was held below 0.01. Complete
frequency scans were performed at a constant
temperature starting at 23.0 8C. This frequency
scan was repeated at a temperature 5.0 8C lower
than that of the previous scan with a final tem-
perature of �50.0 8C. The resulting data were
then time–temperature-shifted horizontally to a
reference temperature with the Williams–Land-
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ell–Ferry approach.4 Different modes of testing
were required for each sample according to the
available geometry of the sample and the oper-
ating compliance of the instrument. The epoxy
and stiffer PDMS sample were tested in tension,
whereas PMMA was measured in the three-
point bending fixture, and the most compliant
PDMS sample was tested in compression.

Nanoindentation Measurements

Nanoindentation was performed with a Nano-
Indenter DCM (MTS Systems, Inc.). Dynamic
oscillation was superposed over load histories
that included an increasing load segment fol-
lowed by a constant load segment with applied
load levels ranging from 5 to 0.01 mN. Har-
monic frequencies were varied from 10 to 300
Hz. The displacement amplitude of oscillation
was maintained at 5.0 6 0.5 nm with propor-
tional integral derivative feedback control for
the glassy PMMA and epoxy samples. The dis-
placement amplitude was increased to 50 nm for
the elastomeric PDMS samples. A Berkovich
pyramid probe tip shape was used. The tip
shape was measured for these probes with
indentation of a fused silica reference sample.
Each frequency sweep was performed 10 times,
each at a different location on the sample. The
reduced storage modulus and reduced loss mod-
ulus at each frequency were calculated with eqs
14 and 15, respectively. The storage modulus
and loss modulus were subsequently calculated
with eq 12 with a Poisson ratio of 0.33 for the
glassy polymers and 0.5 for the elastomers. The
results displayed for the nanoindentation meas-
urements are the averages of these 10 indenta-
tions over a specified range of indentation
depths. The characteristic volume of a material
measured during indentation experiments typi-
cally scales with the cube of the contact radius
for axisymmetric indenters. The Berkovich tip
makes this approximation difficult because it
does not generate a circular contact. However,
calculating the contact radius (assuming a circu-
lar contact area) from the contact area deter-
mined from the indenter area function provides
a reasonable approximation. The characteristic
volume measured with the glassy systems is
approximately 3 �m3. The required increase in
the indentation depths with the elastomer sam-
ples increases the characteristic volume to
approximately 5500 and 20,000 �m3 for the two
types of PDMS samples.

Dynamic calibrations of the system are typi-
cally made with respect to the dynamic model
shown in Figure 1.13 Measuring the dynamic
response of the system with no sample is used
to obtain the system calibrations. The load-
frame stiffness, Kf, is normally assumed to be
infinite (i.e., load-frame compliance is zero). By
monitoring the amplitude and phase shift, we
can use the equations derived for the model to
determine the resonance frequency of the sys-
tem, the system damping coefficient, Ci, the
mass, mi, and the spring constant, Ksp. As dis-
cussed previously, Ksp, which is typically inde-
pendent of the frequency over a wide frequency
range, can be determined from the raw load as a
function of the raw displacement, and the sys-
tem mass can be determined from the displace-
ment at zero load. Also, Ci is often assumed to
be independent of the frequency, and this is not
necessarily true.

RESULTS AND DISCUSSION

We begin our comparison of the dynamic nano-
mechanical and bulk properties with polymeric
samples within the glassy region of the viscoe-
lastic spectrum. A plot of the dynamic response
for cured thermoset epoxy measured with both
the solids analyzer and the nanoindenter is
shown in Figure 2. The overall good agreement
between the data obtained with the solids ana-
lyzer and the nanoindenter is apparent. The
nanoindentation values are lower than the DMA
results by less than a factor of two. The higher
frequency values plotted from the solids ana-
lyzer experiments were obtained through time–
temperature superposition (TTS). This method
allows an effective frequency range of over 10
decades for the samples tested here. The values
of the shift factor, aT, used in TTS are shown for
all the samples in Figure 3. These factors obey a
linear dependence, as expected for TTS. Valida-
tion of TTS relationships for nanoindentation
data has not been yet demonstrated. Even better
agreement between the storage moduli obtained
from nanoindentation and the solids analyzer
for the glassy PMMA sample is shown in Figure
4. Again, the TTS of the solids analyzer data
shows excellent agreement, as expected with the
aT values shown in Figure 3. The loss moduli
for the PMMA and the epoxy samples were not
plotted because of the large uncertainty in these
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values. The good agreement found for these two
glassy samples concurs with the data of Lu
et al.17

For both the epoxy and the PMMA sample,
the nanoindenter appears to capture the fre-
quency dependence (the slope) of the storage
modulus. This result is not unexpected because
the storage modulus dominates the dynamic
response for glassy polymers. However, the
larger discrepancy between the indentation data
and solids analyzer data for epoxy with respect
to PMMA is interesting. Three common sources
of uncertainty in nanoindentation experiments
with polymers could be considered sources of

this disagreement. The first is a proper calibra-
tion of the tip area function A(hc) with the
method of Oliver and Pharr.1 Briefly, a series of
indentation measurements are made on a fused
silica standard. With a known modulus, the
cross-sectional area of the indenter can be meas-
ured over a range of contact depths and fit to a
multiterm polynomial. The maximum load limit
of the DCM apparatus limits indentation depths
greater than 750 nm with fused silica. Depths
exceeding this limit assume that the area is gov-
erned by the lead term of the area function. This
term is typically determined from laser reflec-
tance methods18 and supplied by the manufac-
turer. The dynamic data reported for the glassy
samples were averaged within this valid calibra-
tion range (300–800 nm). The characteristic vol-
ume of a material tested under these conditions
is approximately 3 �m3. The second source of
uncertainty can arise from improper identifica-
tion of the initial surface contact. An investiga-
tion of where the instrument determined surface
contact revealed only 10 nm of variability within
the 10 indentations. Uncertainty associated with
this variability is much less than the standard
deviation reported from the 10 measurements. A
third consideration may be an inherent strain
rate sensitivity difference between the two
materials. This could arise from the difference
in the microstructures of the thermoset epoxy
and thermoplastic PMMA. Creep compliance

Figure 2. Plot of the frequency (f) dependence of E0

for a cured epoxy resin. Both the nanoindentation
and dynamic mechanical data are represented, and
the dynamic mechanical data have been time–temper-
ature-shifted to a reference temperature of 20 8C.
Each symbol represents an average of 10 measure-
ments for the nanoindentation data and a single
measurement for the dynamic mechanical data. The
error bars represent the corresponding standard devi-
ations (k ¼ 1).

Figure 3. Plot of the aT values versus the tempera-
ture used to time–temperature-shift the data in
Figures 2, 4, and 5.

Figure 4. Plot of the frequency dependence (f) of E0

for commercial PMMA. Both the nanoindentation and
dynamic mechanical data are represented, and the
dynamic mechanical data have been time–tempera-
ture-shifted to a reference temperature of 20 8C. Each
symbol represents an average of 10 measurements for
the nanoindentation data and a single measurement
for the dynamic mechanical data. The error bars rep-
resent the corresponding standard deviations (k ¼ 1).
The aT values used for TTS are plotted in Figure 3.
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data revealed that the epoxy was more sensitive
to an increasing magnitudes of the applied step
strain than the PMMA sample. This result may
be due to the heterogeneity difference between
the two materials. Previous atomic force micro-
scopy using phase contrast imaging of this same
epoxy system revealed an angstrom-thick homo-
geneous layer of material covering heterogene-
ous domains of hard and soft regions approxi-
mately 30 nm in diameter.19 This length scale is
small yet considerably larger than the entangle-
ment length of PMMA.

The PDMS samples, having mechanical
behavior that can be described by the rubbery
plateau of the viscoelastic spectrum, are consid-
ered to be incompressible, ideally elastic, and
insensitive to the probe tip shape.18 The bulk
and nanoindenter dynamic data for the stiffer of
the two PDMS samples are shown in Figure 5.
Although stiff by PDMS standards, this material
has a room-temperature modulus that is nearly
3 orders of magnitude lower than the moduli of
the glassy materials. As a result, substantially
higher displacements are required to resolve
force signals. The area function, therefore, is
evaluated at displacements outside the fused
silica calibration range and depends solely on
the lead term of the area function. Despite this
uncertainty, good agreement between the bulk
and nanoindenter data was observed. A har-
monic amplitude of 50 nm was used during the
collection of the data. Experiments were also
conducted with 5-, 10-, and 25-nm amplitudes,
with no significant difference in the measured
response. The storage and loss moduli were
averaged over indentation depths of 5–10 �m.
The characteristic volume of a material tested
under these conditions is approximately 5500
�m3. The time–temperature superimposed solids
analyzer data for the storage component show
much less scatter than the loss modulus, espe-
cially at the lower frequencies. This scatter in
the loss modulus is believed to be attributable to
the baseline stability in the calibration of the
instrument. This result is supported by the
observation that the scatter is symmetric about
an extrapolated value from higher frequencies.
Within each temperature run, the lower fre-
quency data exhibit this scatter. The aT values,
shown in Figure 3, are expected and typical for
this material.4

The second, more compliant PDMS sample
has a modulus that is only half that of the first
PDMS. This sample presented significant chal-

lenges for identifying the displacement at which
the tip first contacted the sample. In Figure 6,
the static load is plotted verse the displacement
into the surface and illustrates the insensitivity
of this signal to surface contact on soft materi-
als. Nearly 2500 nm of displacement was
required before 20 �N of force was registered.
As mentioned in the introduction, the dynamic
contact stiffness (dynamic load signal) can be
used to provide much greater sensitivity to sur-
face contact and surface stiffness in comparison
with a change in a quasi-static force or stiffness
measurement. The inset image illustrates the
dynamic contact stiffness signal as the tip ap-
proaches the surface, snaps into contact because
of surface forces,20 and measures the increase in
the surface stiffness with displacement.

A comparison of the nanoindentation results
with those of the bulk rheology obtained for the
most compliant PDMS is shown in Figure 7. In
this case, the nanoindentation values exceed
those measured with the solids analyzer. For
additional comparisons, measurements were
made on the same PDMS sample in shear with
a TA Instruments AR2000 rheometer at a 0.1%
strain. (This instrument employs the gap-load-
ing geometry.) Measurements in shear were con-
verted to tension by 2G(1 þ �) under the
assumption of � ¼ 0.5 for PDMS. Spherical
probe indentation tests, often called Johnson–

Figure 5. Plot of the frequency (f) dependence of E0

and E@ for the stiffer of the two PDMS rubbers. Each
symbol represents an average of 10 measurements for
the nanoindentation data and a single measurement
for the dynamic mechanical data. The error bars rep-
resent the corresponding standard deviations (k ¼ 1).
The dynamic mechanical data have been time–tem-
perature-shifted to a reference temperature of 20 8C.
[Color figure can be viewed in the online issue, which
is available at www.interscience.wiley.com]
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Kendall–Roberts (JKR) adhesion tests,21 were
also conducted to determine the modulus incor-
porating adhesion effects. Good agreement was
found among all the tests, with the nanoinden-
tation data remaining nearly a factor of 2 higher
than those of the other bulk methods. The nano-
indenter data were the average storage and loss
values reported over indentation depths of 10–
15 �m. The characteristic volume of a material
tested under these conditions increases to
approximately 20,000 �m3. One plausible reason
for elevated values may be the result of underes-
timating the contact area from inaccurate deter-
mination of the lead area function term. The
sample stiffness over large displacements can be
used to evaluate the compliance of the sample
during the indentation experiment and evaluate
the uncertainty of the area function. In Figure 8,
a plot of the dynamic contact stiffness as a func-
tion of the square root of the contact area is
shown for the loading portion of the indentation
curve obtained with a harmonic frequency of 20
Hz. Through the measurement of the slope of
this line with a linear fit, the change in the stiff-
ness over the change in the square root of the
contact area can be measured over the majority

of the indentation experiment. With the meas-
ured slope, a calculation of the storage modulus
from the following equation yields a value of

Figure 8. Linear fit of the dynamic contact stiffness
over the square root of the contact area obtained from
a single indentation experiment. The data correspond
to measurements collected over indentation depths of
5–20 �m. The linear dependence suggests a homoge-
neous material response over these depths and that
inaccuracies in the contact area appear not to have
played a significant role. [Color figure can be
viewed in the online issue, which is available at
www.interscience.wiley.com]

Figure 6. Plot of the static load verse the displace-
ment into the surface for the most compliant PDMS
sample. The insensitivity of the load signal to surface
contact on soft materials is illustrated by the nearly
2000 nm of displacement before 10 �N of force was
measured. The greater surface sensitivity of the
dynamic contact stiffness signal is illustrated in the
inset image. The dynamic contact stiffness signal
snaps into contact as it nears the surface and senses
the increase in stiffness with further displacement.
[Color figure can be viewed in the online issue, which
is available at www.interscience.wiley.com]

Figure 7. Plot of the frequency (f) dependence of E0

and E@ for the most compliant PDMS sample. Each
symbol represents an average of 10 measurements for
the nanoindentation data and a single measurement
for the dynamic mechanical data. The error bars repre-
sent the corresponding standard deviations (k ¼ 1).
The dynamic mechanical data have been time–temper-
ature-shifted to a reference temperature of 23 8C. The
nanoindentation results are high with respect to the
measured storage and loss components for the dynamic
mechanical response measured with the solids ana-
lyzer, shear rheometer, and JKR indentation experi-
ments. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com]
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2.78 MPa over indentation depths of 5–20 �m:

E ¼
ffiffiffi
�

p
2

�S

�
ffiffiffiffi
A

p 1� �2s
� � ð18Þ

This calculation demonstrates that the surface
stiffness did not change as a function of the
depth. Typically, adjustments of the lead area
function term do not result in dramatic changes
to the calculated modulus because the modulus
depends on the reciprocal of the square root of
the area. Thus, inaccuracies in the contact area
appear not to have played a significant role.

CONCLUSIONS

The use of instrumented indentation to character-
ize the dynamic mechanical response of polymeric
materials has been compared with the response
obtained with more traditional bulk techniques.
Four polymer materials were investigated: a cured
thermoset epoxy, PMMA, and two PDMS samples.
These polymer samples represented materials from
the glassy and rubbery plateau regions of the vis-
coelastic spectrum. The agreement between the
dynamic nanoindenter data and the data obtained
from a more traditional dynamic mechanical ana-
lyzer was good, but it did not match exactly for all
the samples. Polymeric materials have the ability
to both store and dissipate applied mechanical
energy. Although the nanoindenter and classic
rheological instrumentation are both based on the
damped oscillator theory (with similar dynamic
models) and common control systems, the current
generation of nanoindenter tip designs produces
tip–sample interactions for which there are no ana-
lytical solutions. In the absence of an analytical sol-
ution, simple analogues to the elasticity-based
equation used to calculate the modulus for quasi-
static loading are used to generate values of the
storage and loss modulus, which themselves have
little-to-no physical basis. Regardless of this appa-
rent deficiency, the presented results appear to
demonstrate that dynamic mechanical measure-
ments of polymeric materials with nanoindentation
surprisingly capture the bulk viscoelastic proper-
ties of glassy and elastomeric materials over much
smaller length scales than are possible with tradi-
tional rheological techniques. The level of agree-
ment found, however, might be because for glassy
and elastomeric polymers, energy storage domi-
nates the dynamic response (E0 is one to two orders
of magnitude larger than E@). Additionally,

whether the viscoelastic properties determined
with nanoindentation should match exactly meas-
urements from traditional rheological techniques
is difficult to assess. Instrument calibration, strain
effects, and material heterogeneity are several
examples of complications that arise when small
volumes of polymers are tested. The slightly more
divergent results for epoxy compared with those of
PMMAmight be indicative of these types of effects.
Thus, the current calculation methods, though
seemingly adequate for these polymeric materials,
will not be able to capture the dynamic response of
materials for which viscous or rubbery flow condi-
tions exist (i.e., where energy loss is a more signifi-
cant factor). These challenges present numerous
opportunities for the continued development of
indentation instrumentation and techniques.
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